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In the present paper we study the long wavelength and slow time scale behavior of a coasting
beam in a resonator adopting a broad-band impedance model. Based on the renormalization group
approach we derive a set of coupled evolution equations for the beam envelope distribution function
and the resonator voltage amplitude. The equation for the resonator voltage amplitude is further
transformed into a generalized Ginzburg-Landau equation.

I. INTRODUCTION.

So far nonlinear wave phenomena have received scant attention in the study of collective e�ects in charged particle
beams. Considerable experimental and simulation data however exists suggesting that these phenomena should be
included into the entire physical picture of beam propagation in accelerators and storage rings.
A vast literature in the �eld of plasma physics is dedicated to the study of nonlinear wave-particle processes due to

space charge interparticle forces. In high energy particle accelerators, where space charge forces are negligibly small,
of particular interest is the coherent state of the beam under the in
uence of wake�elds, or in the frequency domain,
machine impedance. This state is highly nonlinear and depends on the interaction of nonlinear waves, involving some
weak dissipative mechanisms that balance beam 
uctuations driven by the wake�elds.
In a previous work [1], [2] we studied nonlinear behavior of a coasting beam under the in
uence of a resonator

impedance. Starting from the gas-dynamic equations for longitudinal motion and using a renormalization group (RG)
approach [3], [4] we found a set of coupled nonlinear equations for the beam density and resonator voltage. However,
as is well-known, the hydrodynamic approximation is valid when the beam is close to a local equilibrium, which in a
number of practically important cases may well be far from reality.
The present paper, providing a complete kinetic description of the processes involved, is aimed to overcome the

above mentioned di�culties. In what follows we study the longitudinal dynamics of a coasting beam in a resonator
adopting a broad-band impedance model. We are interested in describing slow motion of beam patterns (droplets)
neglecting fast oscillations of beam density and voltage on the resonator at a frequency close to the resonant frequency.
We employ the RG method to derive amplitude equations governing the dynamics of slow processes. In Section II we
obtain the desired equations for the longitudinal envelope distribution function and the amplitude of the resonator
voltage. In Section III we proceed to transform the equation for the voltage amplitude into a generalized Ginzburg-
Landau equation by solving explicitly the Vlasov equation for the envelope distribution function. Finally in Section
IV we draw some conclusions resulting from the work performed.

II. THE AMPLITUDE EQUATIONS.

The starting point for the subsequent analysis is the system of equations:

@f

@T
+ v

@f

@�
+ �V

@f

@v
= 0;

@2V

@T 2
+ 2


@V

@T
+ !2V =

@I

@T
; (1)

I (�;T ) =

Z
dvvf (�; v;T ) ;
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for the longitudinal distribution function f (�; v;T ) of an unbunched beam and the variation per turn of the voltage
V (�;T ) on a resonator. All dependent and independent variables, as well as free parameters in equations (1) are
dimensionless and have been rescaled according to the relations:

T = !st ; v =
1

!s

d�

dt
= 1 +

ko�E

!s
; ! =

!R

!s
; 
 =

!

2Q
; (2)

� =
e2R
ko�o

�
: (3)

Here !s is the angular revolution frequency of the synchronous particle, �E is the energy error, !R is the resonant
frequency, Q is the quality factor of the resonator, R is the resonator shunt impedance and �o is the uniform beam
density distribution at the thermodynamic limit. Furthermore

ko = � �!s

�2sEs

(4)

is the proportionality constant between the frequency deviation and the energy deviation of a non synchronous particle
with respect to the synchronous one, while � = �M � 
�2s (�M - momentum compaction factor) is the phase slip
coe�cient. The voltage variation per turn V; the beam current I and the longitudinal distribution function f entering
equations (1) have been rescaled as well from their actual values Va, Ia and fa as follows:

Va = 2e!s�o
RV ; Ia = e!s�oI ; fa = �of (5)

Let us introduce the Radon transform [5], [6] of the distribution function f (�; v;T )

f (�; v;T ) =

Z
d�F (�; �;T ) � [v � U (�; �;T )] : (6)

In the de�nition (6) � can be viewed as a Lagrange variable which is usually determined from the condition that the
distribution function f (�; v;T ) be equal to a speci�ed distribution, say the equilibrium distribution for instance:

f (�; v;T ) = f0 (�) ) v = U (�; �;T ) :

Substitution of eq. (6), into the system (1) yields:

@F

@T
+ "

@

@�
(FU) = 0;

@U

@T
+ "U

@U

@�
= �V; (7)

@2V

@T 2
+ 2


@V

@T
+ !2V =

Z
d�

@

@T
(FU) ;

where the fact that the azimuth � is a slow variable (the dependence of F; U and V on � is through a stretched
variable � = "�) has been taken into account. Note that the system (7) resembles the set of gas-dynamic equations,
governing the longitudinal motion of the beam. It bears however, additional information about the velocity distribu-
tion, embedded in the dependence on the Lagrange variable �, and takes into account its overall e�ect through the
integral on the right hand side of the third equation.
We next examine the solution of the system of equations (7) order by order in the formal small parameter " by

carrying out a naive perturbation expansion. The zero order solution (stationary solution) is readily found to be:

F0 = F0 (�) ; U0 = U0 (�) ; V0 � 0

and in particular one can choose

F0 (�) = f0 (�) ; U0 (�) = 1 + �:

Combining the �rst order equations
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@F1

@T
= 0 ;

@U1

@T
= �V1;

@2V1

@T 2
+ 2


@V1

@T
+ !2V1 =

Z
d�F0

@U1

@T
;

yields trivially a unique equation for V1:

@2V1

@T 2
+ 2


@V1

@T
+ !2oV1 = 0 ; !2o = !2 � �:

Solving the �rst order equations one easily obtains:

V1 (�;T ) = E (�;T0) e
i!1�T + c:c:

U1 (�; �;T ) = uo (�; �;T0) + �
E (�;T0)

i!1
ei!1�T + c:c: (8)

F1 (�; �;T ) = Ro (�; �;T0) ;

where

!1 = !q + i
 ; !2q = !2o � 
2 ; �T = T � T0; (9)

and the amplitudes E (�;T0) ; uo (�; �;T0) ; Ro (�; �;T0) are yet unknown functions of �, � and the initial instant of
time T0: Proceeding further with the expansion in the formal parameter " we write down the second order equations
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�
and by elimination of U2 and F2 from the third equation we obtain:
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Z

d�U2
0
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:

Solving the above equation and subsequently the two other equations for U2 and F2 we �nd the second order solution
as follows:
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0
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+
�2

2i!q!21
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@E
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ei!1�T + c:c:

In a way similar to the above we write the third order equations as
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�
:

Solving the equation for V3
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0
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�
that can be obtained by combining the third order equations, and subsequently solving the two other equations for
U3 and F3 we obtain the third order solution:
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+c:c:+ oscillating terms (11)

U3 (�; �;T ) = �uo@uo
@�

�T +
�2

2
!2o

@ jEj2
@�

e�2
�T + oscillating terms

F3 (�; �;T ) = �@ (Rouo)

@�
�T + oscillating terms

Next we collect the secular terms that would contribute to the amplitude equations when applying the RG procedure.
Setting now " = 1 we write down the part of the solution of the system (7) that has to be renormalized

FRG (�; �;T; T0) = eF (�; �;T0) ��T
@

@�

h eF (�; �;T0) eU (�; �;T0)
i
;
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URG (�; �;T; T0) = eU (�; �;T0) ��T eU (�; �;T0)
@
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where

eF (�; �;T0) = F0 (�) + Ro (�; �;T0) ; eU (�; �;T0) = U0 (�) + uo (�; �;T0) :

Following Kunihiro [4] we represent the solution (12) as a family of trajectories or curves f<T0g =
[FRG (T0) ; URG (T0) ; VRG (T0)], being parameterized with T0. The RG equations are de�ned as the envelope equations
for the one-parameter family f<T0g: �

@FRG

@T0
;
@URG

@T0
;
@VRG

@T0

�����
T0=T

= 0: (13)

From the above de�nition (13) it is straightforward to obtain the desired RG equations:
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where

eE (�;T ) = E (�;T ) e�
T :

The �nal step consists in de�ning the envelope distribution function G (�; v;T ) by the Radon transform

G (�; v;T ) =

Z
d� eF (�; �;T ) �

h
v � eU (�; �;T )

i
: (15)

5



By virtue of (15) the system of RG equations (14) is equivalent to the following system of equations for the envelope

distribution function G (�; v;T ) and the resonator voltage amplitude eE (�;T ):

@G

@T
+ v

@G

@�
� �2

!2o

@
��� eE���2
@�

@G

@v
= 0; (16)

2i!q
�
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2i

!1

@

@�

� eE Z dvvG

�
�

� 3

!21
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dvv2f0 (v)

�
@2 eE
@�2

� i

2!q
eE @

@�

�Z
dvvG

�
+

+
�

4!2q

�Z
dv (G� f0)

� � eE Z dv (G� f0) +
2i

!1

@

@�

� eE Z dvvG

��
: (17)

The system of equations (16) and (17) provides a complete description of nonlinear particle-wave interaction. It
governs slow processes of beam pattern dynamics through the evolution of the amplitude functions. In (16) one can
immediately recognize the Vlasov equation for the envelope distribution function G (�; v;T ) with the ponderomotive
force, due to fast oscillations at frequency close to the resonant frequency. It may be worth noting that the system
(16) and (17) intrinsically contains the nonlinear Landau damping mechanism, a fact that will become apparent from
the treatment in the next Section.

III. DERIVATION OF THE GENERALIZED GINZBURG-LANDAU EQUATION.

In order to solve equation (16) we perform a Fourier transform and obtain:

(
� kv)G (�) =

� �2

(2�)4 !2o

Z
d�1d�2d�3� (�� �1 � �2 � �3) (k � k1)

@G (�1)

@v
eE (�2) eE� (�3) ; (18)

where

� = (k;
) ; � (�) = � (k) � (
)

and the Fourier transform of a generic function g (�;T ) is de�ned as

g (�;T ) =
1

(2�)
2

Z
d
dkg (k; 
) ei(k��
T );

g (k; 
) =

Z
d�dTg (�;T ) e�i(k��
T );

g� (k; 
) = [g (�k;�
)]� :

Solving equation (18) perturbatively we represent its solution in the form:

G (�) = (2�)
2
f0 (v) � (�) + eG (�) ; eG (�) =

1X
n=1

Gn (�) ; (19)

where
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G1 (�) = � �2

(2�)
2
!2o

k


� kv

@f0

@v

Z
d�1d�2� (�� �1 � �2) eE (�1) eE� (�2) ; (20)

Gn (�) = � �2

(2�)
4
!2o
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�

�
Z

d�1d�2d�3� (�� �1 � �2 � �3) (k � k1)
@Gn�1 (�1)

@v
eE (�2) eE� (�3) : (21)

The Fourier transform of equation (17) yields the linear dispersion relation


 = �i
 + k � � hvi0
!q!1

k +
3�


v2
�
0

2!q!1
k2 =

= k � � hvi0
!2o

k +
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!q!2o
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v2
�
0

!4o
k2

!
: (22)

The integrals over v of the envelope distribution function G (�; v;T )

I0 (�;T ) =

Z
dvG (�; v;T ) =

1

(2�)2

Z
dvd
dkG (k; v; 
) ei(k��
T );

I1 (�;T ) =

Z
dvvG (�; v;T ) =

1

(2�)
2

Z
dvd
dkvG (k; v; 
) ei(k��
T )

entering equation (17) can be computed in a straightforward manner. Substituting the solution (19)-(21) into the
above equations with the linear dispersion relation (22) in hand, up to second order in G (k; v; 
), we �nd

I0 (�;T ) = 1�W
h��� eE (�;T )

���i+ :::; (23)

I1 (�;T ) = 1�
�
1� �

!2o

�
W
h��� eE (�;T )

���i+ :::; (24)

where the function W is de�ned as

W (z) =
�2

!2o�
2
v

(1 + i
L)

�
1� �2

2!2o�
2
v

z2
�
z2; (25)

and


L =
�

!2o�v

r
�

2
exp

�
� �2

2!4o�
2
v

�
(26)

is the Landau damping factor. In the above calculations the equilibrium distribution function has been taken to be
the Gaussian one

f0 (v) =
1

�v
p
2�

exp

"
� (v � 1)

2

2�2v

#
;

where

�v =
jkoj�E
!s
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and �E is the r.m.s. of the energy error, proportional to the longitudinal beam temperature. By substitution of the
expressions (23) and (24) into equation (17) we arrive at the generalized Ginzburg-Landau equation:
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It can be further cast to a simpler form by introducing the rescaled independent and dependent variables according
to

� =
�T

2!q
; x =

!op
3 (1 + �2v)

�
� � T +

�T

!o!q

�
; 	 =

j�j eE
!o�v

:

Then the generalized Ginzburg-Landau equation for the amplitude of the resonator voltage takes its �nal form:

i
@	
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+ ib
	 = �

�
1� 2i
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�
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@x2
+ a


@	
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; (27)

where

a =
2

!o
p
3 (1 + �2v)

; b =
2!q
�

;

b1 =
1

�b2
; a1 = a (1� 4b1) ;

and the function W (j	j) is given now by the simple expression:

W (j	j) = (1 + i
L)

�
1� 1

2
j	j2

�
j	j2 : (28)

The generalized Ginzburg-Landau equation (27) is known [7] to provide the basic framework for the study of
many properties of non equilibrium systems, such as existence and interaction of coherent structures, generic onset of
travelling wave disturbance in continuous media, appearance of chaos. Recent experimental and numerical evidence
(see e.g. [1], [2] and the references therein) shows that similar behavior is consistent with the propagation of charged
particle beams, and the generalized Ginzburg-Landau equation we have derived could represent the appropriate
analytical model to study the above mentioned phenomena.

IV. CONCLUDING REMARKS.

As a result of the investigation performed we have shown that a coasting beam under the in
uence of a resonator
impedance exhibits spatial-temporal patterns modulated by an envelope (amplitude) function, which varies slowly
compared to the fast time and short wavelength scales of the pattern itself. Extracting long wavelength and slow time
scale behavior of the system we have derived a set of coupled nonlinear evolution equations for the beam envelope
distribution function and voltage amplitude. We have further shown that the amplitude of the nonlinear wave satis�es
a generalized Ginzburg-Landau equation.
It is worthwhile to mention that the analytical framework presented here bears rather general features. It pro-

vides complete kinetic description of slow, fully nonlinear particle-wave interaction process, and allows higher order
corrections to the generalized Ginzburg-Landau equation to be taken into account.
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